Bayesian information criterion for censored survival models.

نویسندگان

  • C T Volinsky
  • A E Raftery
چکیده

We investigate the Bayesian Information Criterion (BIC) for variable selection in models for censored survival data. Kass and Wasserman (1995, Journal of the American Statistical Association 90, 928-934) showed that BIC provides a close approximation to the Bayes factor when a unit-information prior on the parameter space is used. We propose a revision of the penalty term in BIC so that it is defined in terms of the number of uncensored events instead of the number of observations. For a simple censored data model, this revision results in a better approximation to the exact Bayes factor based on a conjugate unit-information prior. In the Cox proportional hazards regression model, we propose defining BIC in terms of the maximized partial likelihood. Using the number of deaths rather than the number of individuals in the BIC penalty term corresponds to a more realistic prior on the parameter space and is shown to improve predictive performance for assessing stroke risk in the Cardiovascular Health Study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A unified framework for fitting Bayesian semiparametric models to arbitrarily censored survival data, including spatially-referenced data

A comprehensive, unified approach to modeling arbitrarily censored spatial survival data is presented for the three most commonly-used semiparametric models: proportional hazards, proportional odds, and accelerated failure time. Unlike many other approaches, all manner of censored survival times are simultaneously accommodated including uncensored, interval censored, current-status, left and ri...

متن کامل

Bayesian Two-Sample Prediction with Progressively Type-II Censored Data for Some Lifetime Models

Prediction on the basis of censored data is very important topic in many fields including medical and engineering sciences. In this paper, based on progressive Type-II right censoring scheme, we will discuss Bayesian two-sample prediction. A general form for lifetime model including some well known and useful models such asWeibull and Pareto is considered for obtaining prediction bounds ...

متن کامل

Bayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions

The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...

متن کامل

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

Bayesian Optimum Design Criterion for Multi Models Discrimination

The problem of obtaining the optimum design, which is able to discriminate between several rival models has been considered in this paper. We give an optimality-criterion, using a Bayesian approach. This is an extension of the Bayesian KL-optimality to more than two models. A modification is made to deal with nested models. The proposed Bayesian optimality criterion is a weighted average, where...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 56 1  شماره 

صفحات  -

تاریخ انتشار 2000